Самодельный измеритель емкости конденсаторов

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

Во многих устройствах применяются оптроны, и надо четко понимать, что такое оптрон и как его проверить, для успешного поиска неисправностей

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Кварц это кристаллический электронный прибор, поддерживающий резонансные колебания на фиксированной частоте. Чтобы проверить кварц нужно собрать одну из предложенных схем для проверки.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем . Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Самодельные измерительные приборы. Радиолюбительская конструкция для измерения емкости конденсаторов от 1 пф до 15000 мкф

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Конечно, есть много способов убедится в исправности батареек, например поменять их заведомо рабочими, но иногда в домашних припасах обнаруживается целые залежи батареек и не понятно, что с ними делать, насколько надежны они в работе, не откажет ли наша любимая мыльница в самый неподходящий момент. Поэтому если у вас есть хотя бы тестер или мультиметр, рекомендую сделать отбраковку ненадежных элементов питания

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Метрономы используются при задании танцевального ритма в танцах и ритмической гимнастике, при занятиях музыкой. Всего на двух биполярных транзисторах можно сделать схему метронома своими руками, при помощи которого можно устанавливать ритм от 35 до 220 ударов в минуту.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Читайте также:  Рецепты праздничных блюд из курицы

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус — это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Ваттметр — измерительный прибор, используемый для определения мощности электрического тока или электромагнитного поля. В быту такое устройство применяют для определения величины энергопотребление устройств электронной техники.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

В данной теме рассмотрим подборку нескольких радиолюбительских схем, позволяющих собрать переходник USB COM, который часто используется в измерительной и медицинской техники. Устаревший, но все еще актуальный последовательный порт RS-232, он же COM-порт, используется для обмена информацией между компьютером и устройством. Последовательным он назван потому, т.к обмен данными идет бит за битом по одному.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.

В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы. Кроме того, данным прибором можно "прозванивать" электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные .

Этот измеритель является простым устройством, служащим для измерения емкости электролитических конденсаторов от 1 мФ до 4700 мФ. Его точность — около 5% — в большей мере зависит от точности исполнения и градуировки. Принцип действия устройства следующий: измеряемый конденсатор Сх заряжается током.

Читайте также:  Работа с профилями под гипсокартон

Схема простого самодельного измерителя емкости на логических микросхемах. Измеритель емкости состоит из генератора импульсов (D1.1—D1.3), делителя частоты-(02—D4), электронного ключа (V1) и измерительной цепи (V2, R7 и Р1). Принцип действия прибора основан на измерении среднего тока разряда измеряемого конденсатора, заряженного от источника .

Принципиальная схема самодельного измерителя емкости конденсаторов. выполнена на операционном усилителе К153УД1. Принцип действия измерителя емкости конденсаторов от нескольких пикофарад до 5 мкФ основан на измерении переменного тока, протекающего через исследуемый конденсатор .

Схема измерителя емкости электролитических конденсаторов, которые в процессе эксплуатации и хранения изменяют свою емкость, поэтому иногда возникает необходимость измерения их емкости. Принцип действия измерителя емкости конденсаторов от 3000 пФ — 300 мкгФ основан на измерении пульсирующего тока, протекающего .

Для измерения емкости конденсаторов можно воспользоваться схемой, рис., и любым частотомером. Схема представляет из себя приставку к частотомеру, по показаниям которого при помощи пересчета можно определить емкость. Измеряемый конденсатор подключается к клеммам Х1 — Х2, и его.

С помощью такого прибора можно проверить, нет ли внутри конденсаторов обрыва или короткого замыкания, значительной утечки. Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах .

Как показала практика, при ремонте промышленной и бытовой радиоаппаратуры наиболее часто встречающаяся неисправность — полная (обрыв, пробой) или частичная потеря емкости как оксидных, так и любых других .

Предлагаемый прибор позволяет измерять емкость конденсаторов в диапазоне 1. 10000 мкФ. Он портативен и потребляет от девятивольтовой батареи всего 7 мА. Принцип роботы прибора основан на измерении продолжительности разряда конденсатора.

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Читайте также:  Принцип работы электрического духового шкафа

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector